您的位置 首页 FPGA

双向电平转换工作原理 自动双向电平转换芯片介绍

01 背景概述 如今整个电路系统,性能要求越来越高,功耗要求越来越低,其设计也越来越复杂,在目前复杂系统设计中会存在各个元器件之间的工作电压不一致的情况; 例如:当主控SOC的通讯…

01
背景概述
如今整个电路系统,性能要求越来越高,功耗要求越来越低,其设计也越来越复杂,在目前复杂系统设计中会存在各个元器件之间的工作电压不一致的情况;
例如:当主控SOC的通讯接口电压电平为3.3V时,而另一个外设的通讯接口电压电平要求为1.8V时,这个时候就会出现电路系统内部元器件之间电压不匹配的情况(如图1所示)。
为了让整个电路系统中的各种器件能够正常通讯使用,这个时候就需要使用对应的电压电平转换芯片。
wKgZomWKg9CAdjnvAAAODtzpEE0785

图1, 电平匹配示意图
02
双向电平转换工作原理
在实际应用中,存在发送端和接收端会互换的情况,如IIC、MDIO、SPI等需要双向通信的情况下,就需要使用双向电平转换芯片。其工作原理如下:
如果输出为左边。当左侧输入高电平H(输入电压为VCCA)时,由于VGS<阈值,所以MOSFET截至,右侧输出电压为VCCB),如图2-A所示;当左侧D0输入低电平L(0V)时,由于VGS = VCCA > 阈值,所以MOSFET导通,右侧输出电压为低电平0V如图2-B所示。
当右侧输入高电平H时,由于左侧初始为高电平VCCA,VGS= 0<阈值,MOSFET截至,如图3-A所示;右侧输入L的时候,原本VS=VG = VCCA,VGS = 0,MOSFET截至,但是由于场效应管有一个寄生二极管,它会将左侧输出下拉至一个二极管的导通电压,此电压在0.3V到0.7V之间,所以这里我们可以认为左侧输出为低电平。此时若VCCA为3.3V,那么VGS(3.3V-0.7V=2.6V)大于场效应管的栅极阈值电压而使MOSFET导通,导通后右侧输入和左侧输出为同一电压接近0V,如图3-B所示。
wKgZomWKg9GAMM5WAABjyA4tDXc187

图2-A & 2-B
wKgZomWKg9GADer2AABswhuiKlY135

图3-A & 3-B
03
谷泰微双向电平转换芯片工作原理
谷泰双向自动方向检测电压转换器,可以与漏极开路以及推挽式驱动配合,最大速率可到24Mbps(推挽,开漏2Mbps最高速率)。其工作原理如前面第2部分介绍的原理类似,用N通道MOSFET的导通和截止A端口和B端口之间的连接。当连接到A或B端口的驱动器为低电平时,对应端便会被MOSFET N2拉低(如图4所示)。
wKgZomWKg9GAR0G-AABXWlwwEFk114

图4 谷泰微双向电平转换芯片框图
04
谷泰微双向电平转换器产品介绍
谷泰微电平转换器系列,支持1~8路,主要用于UART、I2C、SMBus、GPIO等通信接口,自动识别方向,兼容推挽输出架构和开漏输出架构,其主要特点如下: ● 无需数据方向控制; ●推挽架构(Push-Pull)支持24Mbps数据速率,开漏架构(Open-Drain)支持2Mbps数据速率; ●A侧支持1.65V~3.6V,B侧支持2.3V~5.5V; ● A、B侧电源互相隔离; ● 无上电时序要求; ● 支持-40°C~+85°C。
需要注意VCCA的供电电压不能大于VCCB,即A侧接到低电压系统,B侧接到高电压系统。
wKgZomWKg9GAdsobAAALHua9yA4803

典型应用图
05
谷泰微电平转换器产品列表
wKgZomWKg9GASIZqAAJ8ood_66c653
声明:本文内容来自网络转载或用户投稿,文章版权归原作者和原出处所有。文中观点,不代表本站立场。若有侵权请联系本站删除(kf@86ic.com)https://www.86ic.net/fangan/350026.html

为您推荐

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部