
如何为 FPGA 供电寻找最佳解决方案-如果使用多个单独的电源,增加时序控制芯片便可实现所需的上电/关断顺序。一个例子是 LTC2924,它既能控制 DC-DC 转换器的使能引脚来打开和关闭电源,也能驱动高端 N 沟道 MOSFET 来将 FPGA 与某个电压轨连接和断开。

FPGA学习:电源电路设计-与任何电子元器件一样,FPGA器件需要有电源电压的供应才能工作。尤其对于规模较大的器件,其功耗也相对较高,其供电系统的好坏将直接影响到整个开发系统的稳定性。所以,设计出高效率、高性能的FPGA供电系统具有极其重要的意义。

FPGA的电源电压种类,你知道多少?-在硬件电路设计中,每一个IC芯片都有相应的电源端口对其供电,以驱动IC进行工作。对于普通的IC芯片,极大部分都是由单电源3.3V电压供电,且输出的高电平电压也是3.3V,例如MCU和存储器等常用的芯片。但是对于FPGA则不然,可编程逻辑的特性赋予了它包容万物的能力,最终成为一个需要多电源供电的芯片,那对于FPGA的电源电压种类,到底有多少呢?

功率大,多路输出且相互独立的开关电源设计-反激式电源一般用在100w以下的电路,而本电源设计最大功率达到300w,显然不适合。在功率较大的高频开关电源中,常用的主变换电路有推挽电路、半桥电路、全桥电路等。其中推挽电路用的开关器件少,输出功率大,但开关管承受电压高(为电源电压的2倍),且变压器有6个抽头,结构复杂;全桥电路开关管承受的电压不高,输出功率大,但需要的开关器件多(4个),驱动电路复杂;半桥电路开关管承受的电压低,开关器件少,驱动简单。根据对各种拓扑方案的电气性能以及成本等指标的综合比较,本电源选用半桥式DC/DC变换器作为主电路。图2为主电路拓扑图。