以FPGA为中心的高速误码测试仪规划流程概述

以FPGA为核心的高速误码测试仪设计流程概述-误码分析仪作为数字通信系统验收、维护和故障查询的理想工具,广泛应用于同轴电缆、光纤、卫星及局间中继等符合CEPT(European Confence of Postal and Telecommunications Administrations)数字系列通信系统传输质量的监测。评价一个通信系统的可靠性的指标就是检测该通信系统在数据传输过程中误码率的大小,本文设计的高速信号误码测试仪,用于对EPON中接收和发送突发光信号的接收模块的可靠性进行检测。目前误码分析仪的工作模式已发展到如下4种:分析仪模式、发生器模式、分析仪/发生器模式、直通模式。本设计中的误码测试仪属于第3种类型,即该误码测试仪可以产生测试的码流,又可以进行误码测试。

广告

选用FPGA器材完成通讯软硬件验证与测验渠道的开发规划

采用FPGA器件实现通信软硬件验证与测试平台的开发设计-为了适应通信应用要求的多样性, 需要一种可以实现快速设计、快速验证、快速移植的软硬件验证与测试平台。该平台可以提供通信系统最基本的硬件架构、软件环境、灵活的接口以及系统可配置的设计功能,方便用户根据应用要求在该平台上设计和配置所需的通信系统,并测试该系统的功能和性能,进而直接在该平台上实现设计到设备的转化。

对蓄电池的工作温度进行实时的监测

本站为您提供的对蓄电池的工作温度进行实时的监测,通信电源蓄电池温度的监测方案 通信电源被称为通信系统的心脏,电源系统将直接影响通信系统的可靠性和稳定性。目前,通信系统电源供电大都是由不间断的蓄电池提供的,蓄电池温度过高势必影响到电池的工作效率和寿命。因此对蓄电池的工作温度进行实时的监测具有实际意义。美国APC公司的一项调查结果表明,大约有75%以上的通信系统故障都是由于电源设备故障而引起的。

白光LED通讯体系的噪声与搅扰剖析

本站为您提供的白光LED通信系统的噪声与干扰分析,阐述了背景可见光在噪声受限与干扰受限的白光LED通信系统中的影响。利用带通滤波器和光学设计以及噪声匹配等方法提高了作为噪声受限系统的接收机性能

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部