STM32单片机PID算法的准则及使用办法

STM32单片机PID算法的原则及应用方法-一、总体原则

PID调试一般原则

a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数Ti。

c.在输出不振荡时,增大微分时间常数Td。

广告

根据FPGA器材完成AGC算法和体系的规划

基于FPGA器件实现AGC算法和系统的设计-大多数接收机必须处理动态范围很大的信号,这需要进行增益调整,以防止过载或某级产生互调,调整解调器的工作以优化工作。在现代无线电接收装置中。可变增益放大器是电控的,并且当接收机中使用衰减器时,他们通常都是由可变电压控制的连续衰减器。控制应该是平滑的并且与输入的信号能量通常成对数关系(线性分贝)。在大多数情况下,由于衰落,AGC通常用来测量输入解调器的信号电平,并且通过反馈控制电路把信号电平控制在要求的范同内。

根据计算下的行同步码功率(SYNC_DL)模块

基于计算下的行同步码功率(SYNC_DL)模块-在本设计中,前端 TD_SCDMA 的射频信号 RF 输入后,经过 MAX2392 零中频下变频解调后进行增益处理。VGA 输出的信号经过 ADC 变换后就成为数字中频信号,经 RSP(接收信号处理器)处理输出为 IF 数字信号。IF 信号可以经过 AGC 控制算法处理后控制 VGA 的增益。AGC 增益控制算法在数字部分来实现,在本设计中,AGC 电路可以有效提高链路的动态范围(+25~-105 dBm),提高 ADC 输出的 SNR,以使 DSP 能更容易地实现 Dw-PTS 同步。AGC 在系统中的位置如图 1 虚线框所示:

根据fpga和单片机的程控滤波器

基于fpga和单片机的程控滤波器-以单片机和可编程逻辑器件(FPGA)为控制核心,设计了一个程控滤波器,实现了小信号程控放大、程控调整滤波器截止频率和幅频特性测试的功能。其中放大模块由可变增益放大器AD603实现,最大增益60dB,10dB步进可调,增益误差小于1%。程控滤波模块由MAX297低通滤波、TLC1068高通滤波及椭圆低通滤波器构成,滤波模式用模拟开关选择。本系统程控调整有源滤波的-3dB截止频率,使其在1~30kHz范围内可调,误差小于1.5%。此外,采用有效值采样芯片AD637及12位并行A/D转换器MAX120实现了对扫频信号幅度的测量。

选用现场可编程门阵列器材完成典型电路的设计方案

采用现场可编程门阵列器件实现典型电路的设计方案-在科研和工程中,数据采集系统具有很广泛的应用,针对各类电压型传感器输出的信号伏值不同这种情况,本文提出了一种能够控制增益的数据采集系统。该系统以FPGA作为逻辑控制核心,选用仪表运算放大器AD623作放大电路,ADG704作为模拟开关,通过对FPGA进行编程配置,控制模拟开关选通不同的电阻,选通电阻配合AD623实现放大。同时该系统可以对多通道配置不同的增益,从而可以采集不同传感器输出的信号。实现了采集范围宽的采集要求。

Vishay推出了传感器和光障体系使用优化的小型SMD接收器

Vishay推出了传感器和光障系统应用优化的小型SMD接收器-在中长距反射传感器系统、红外光障系统(如车库门开门器等)、坐便盆及其他“物体存在”系统中,增益控制处理必须不同于远程应用。在远程应用中,自动增益控制 (AGC) 可调整增益以适应光环境水平、寄生噪声和其他标准,从而接收器可继续响应数据信号,同时拒斥杂音。然而,可变增益并不适合传感器应用,因为这会极大增加设计的复杂性。此外,传感器应用需要快速响应时间,以便在持续的 38-kHz 信号中工作。

高速使用中电流反应运放电路

电流反馈放大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下通常都具有优异的线性度。而电压反馈放大器的带宽随着增

选用AD8376和AD9445的宽带ADC接口电路

该电路采用AD8376 VGA,能够为AD9445等高速ADC提供可变增益、隔离和源阻抗匹配。利用该电路,当AD8376的增益为2 …

根据ADS的S波段平衡式宽带低噪声放大器规划

摘要:针对宽带雷达接收前端的应用,基于ADS软件设计了一种S段平衡式宽带低噪声放大器。在软件仿真中使用晶体管的Spice模型,在确定直流工作点后进行输入端的最小噪声阻抗匹配和输出端的最大增益阻抗匹配,

增益可调射频宽带放大器规划

0 前言无线通信的快速发展,对信息通讯起到了促进作用。射频宽带放大器一般应用于广播、电视、无线通信系统和射频信号发生器中,主要特点是在很宽的频带范围内,能够实现阻抗匹配,增益的起伏变化很小。传统采用负

联系我们

联系我们

在线咨询: QQ交谈

邮箱: kf@86ic.com

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部