
基于压电MEMS微执行器,的三大主流技术分享-压电MEMS通过单片即可实现微执行、能量收集、传感和无线通信,是应用潜力巨大的热点技术。压电MEMS微执行器能够精确、自主地执行复杂动作如直线、旋转、加速度、钳动等,以此完成对极微小器件与结构的纳米尺度精确操作。

MEMS技术如何满足天线调谐?移动终端天线的挑战-通过使用数字选择方式的MEMS电容器件,MEMS数字可调IC提供了一种替代变容二极管的高性能选择。这些可调节电容器的建造开始于两个金属板,其中一个在硅芯片表面,在其上方几微米处则悬浮着另一个。通过改变这两个金属板之间的距离可以调节它们之间的电容,而利用外加静电场的吸引力以使悬浮的金属板上下移动,则可以很精确地改变电容值。这些电容元件的阵列组成调谐矩阵,可以用来很精确地控制电容系统。实际上,对变容二极管进行精确的数字近似已经成为可能,而且还具有近乎完美的线性度和比传统模拟解决方案更宽的调谐范围。

运动物联网中惯性传感器承担着什么作用-手机中普遍存在的消费类惯性传感器使人们对其精度普遍感到失望,因此,在推动运动物联网(IoMT)的概念方面,迄今都没有什么成效。然而,新型高性能工业传感器能支持精确的角度指向和精确的地理定位性能,同时还能达到必要的尺寸和成本效率要求,故而现在又做好了推动运动物联网发展的准备。 在激增的高质量传感器、可靠连接和数据分析的共同推动下,工业效率迈上了新的台阶,而不断提高这些智能节点的自动化和移动化程度也能带来好处。

压电MEMS微执行器的设计方案-压电MEMS通过单片即可实现微执行、能量收集、传感和无线通信,是应用潜力巨大的热点技术。压电MEMS微执行器能够精确、自主地执行复杂动作如直线、旋转、加速度、钳动等,以此完成对极微小器件与结构的纳米尺度精确操作。

基于一种专为FISO光纤温度传感器配套设计的TMI光纤信号调节器介绍-TMI调节器的设计目的之一是使用它和其兼容的FOT-L/H或FOT-M温度传感器,可以执行精确地温度测量。得益于其独特的专利技术,使用TMI调节器可对FISOFabry-Perot光纤传感器的绝对干涉腔体长度进行测量,这种测量非常精确可靠。TMI 具备满量程0.01%的分辨率和满量程0.025%的精度。

在PADS中为 copper 形状和 trace 创建精确的外框和拐角功能增强了。显示和打印 copper 和 trace的方法限制了精度,因为 traces 和 copper 外框是以相等于 tra